Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(g(X)) → f(X)
Q is empty.
↳ QTRS
↳ AAECC Innermost
Q restricted rewrite system:
The TRS R consists of the following rules:
f(g(X)) → f(X)
Q is empty.
We have applied [15,7] to switch to innermost. The TRS R 1 is none
The TRS R 2 is
f(g(X)) → f(X)
The signature Sigma is {f}
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(g(X)) → f(X)
The set Q consists of the following terms:
f(g(x0))
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
F(g(X)) → F(X)
The TRS R consists of the following rules:
f(g(X)) → f(X)
The set Q consists of the following terms:
f(g(x0))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
F(g(X)) → F(X)
The TRS R consists of the following rules:
f(g(X)) → f(X)
The set Q consists of the following terms:
f(g(x0))
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].
The following pairs can be oriented strictly and are deleted.
F(g(X)) → F(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
F(x1) = F(x1)
g(x1) = g(x1)
Lexicographic path order with status [19].
Quasi-Precedence:
[F1, g1]
Status: g1: [1]
F1: [1]
The following usable rules [14] were oriented:
none
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(g(X)) → f(X)
The set Q consists of the following terms:
f(g(x0))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.